233 | 0 | 66 |
下载次数 | 被引频次 | 阅读次数 |
为了适应深远海漂浮式风电建设发展需求,本文针对大容量风电机组系泊系统建设成本高的问题,开展系泊系统优化设计研究。采用多段式系泊设计,将传统刚性锚链与聚酯缆、配重质量相结合,通过自由衰减和动态响应模拟分析系统的自振频率和动态响应特性。结果表明,聚酯缆索系泊方案能够显著降低了漂浮平台的自振频率呈现柔性特征。通过优化配重质量,聚酯缆系泊方案在极端工况下垂荡、纵摇和横摇响应峰值分别为5.05m、-8.23°和0.81°,显著改善了平台的动态稳定性。聚酯缆系泊系统在满足API RP 2SK安全系数的前提下,成本较全锚链方案降低25.5%,展现出显著的经济性优势。聚酯缆索与配重结合的多段系泊方案可有效提高漂浮式风力风电极限工况下的稳定性和经济性,为大型漂浮式风机的系泊系统优化提供了参考。
Abstract:In order to accommodate the development requirements of deep sea floating wind turbine, this paper developed the optimal design of mooring system for high construction cost of large-capacity wind turbine mooring system.A multi-stage mooring design is adopted, combining the traditional rigid chain with polyester cable and counterweight mass, and the natural frequency and dynamic response characteristics were analysed by free decay and dynamic response simulation. It is shown that the polyester mooring line can significantly reduce the natural frequency of the floating platform presenting flexible characteristics.By optimising the counterweight mass, the polyester polyester mooring line improves the dynamic stability of the platform with peaks of 5.05m,-8.23° and 0.81° for heave, roll and pitch under extreme conditions, respectively.The polyester cable mooring system meets the API RP 2SK safety factor, and the cost is 25.5% lower than that of the full mooring chain solution, demonstrating a significant economic advantage.The multi-stage mooring system combining polyester cables and counterweights can effectively improve the stability and economy of floating wind turbine, which provides a reference for the optimisation of the mooring system of large scale floating wind turbine.
[1] Group World Bank. Offshore wind development program:offshore wind roadmap for vietnam[R].Washington:ESMAP,2021.
[2] JONKMAN J M. Dynamics of offshore floating wind turbines-model development and verification[J]. Wind Energy:Int. J. Progress Appl. Wind Power Conversion Technol.2009,12(5),459-492.
[3] JONKMAN J. Definition of the Floating System for Phase IV of Oc3[R].USA:NREL,2010.
[4] Robertson,A.,Jonkman,J.,Masciola,M.,Song,H.,Goupee,A.,Coulling,A.,Luan,C. Definition of the semisubmersible foating system for phase l of OC4[R].USA:NREL,2014.
[5] BAK C,ZAHLE F,BITSCHE R,et al. A.The DTU 10-MW Reference Wind Turbine[R].Denmark:DTU,2013.
[6]陈嘉豪,高一帆,尹梓炜,等.近海深水区混凝土半潜型浮式风机一体化计算与耦合动力特性分析[J].南方能源建设.2024,11(2):31-41.
[7] CROZIER A. Design and dynamic modeling of the support structure for a 10 MW offshore wind turbine[D]. Trondheim:Norwegian Univevsity of Science and Techndogy,2011.
[8]李帅,任亚君,郝军刚,等.基于水动力分析的15MW级半潜式漂浮基础优化研究[J].水力发电.2023,49(8):99-107.
[9] PILLAI A,GORDELIER T J,THIES P,et al. Anchor loads for shallow water mooring of a 15 MW floating wind turbine—Part II:Synthetic and novel mooring systems[J].Ocean Eng.2022,266(1):112619.
[10]刘功鹏,杨羽霏,杨翠兰,等.中欧漂浮式海上风电成本比较与变化趋势研究[J].水利水电快报.2024,45(7):70-73.
[11] LIAN Y S,Complex mechanical properties of synthetic fiber mooring and its effect on dynamic response of taut mooring system[D].TianJin:Tianjin university,2016.
[12] PHAM H,CARTRAUD P,SCHOEFS F,et al.Dynamic modeling of nylon mooring lines for a floating wind turbine[J].Applied Ocean Research.2019,87:1-8.
[13]陈瑞祥,张火明,陆萍蓝,等.浮式风机聚酯系泊系统动力响应及优化[J].中国计量大学学报,2021,32(3):347-354.
[14]易豪,孙雷,陆亮,等.张紧式系泊半潜式风机平台水动力响应建模分析[J].液压与气动.2021(1):79-84.
[15] LIANG Z,LI H,MA Y,et al.A combination mooring system and mooring characteristics study[J].Journal of Ship Mechanics.2016,20(3):306-314.
[16]吴澜.半潜平台带浮子的系泊系统特性计算分析与参数优化研究[D].北京:中国舰船研究院,2014.
[17] RINALDI G,GORDELIER T,SANSOM M,et al.Development of a modular mooring system with clump weights[J].Ocean Engineering.2021,223:108536.
[18] PILLAI A C,THIES P R,JOHANNING L. Mooring system design optimization using a surrogate assisted multi-objective genetic algorithm[J].Engineering Optimization.2019,51(8):1370-1392.
基本信息:
DOI:10.16189/j.nygc.2025.01.002
中图分类号:TM614
引用信息:
[1]黄玉佩,金涛,黄建武等.漂浮式风机合成纤维系泊系统优化分析[J].能源工程,2025,45(01):10-17.DOI:10.16189/j.nygc.2025.01.002.
基金信息: